A Robust Particle Filter-Based Method for Tracking Single Visual Object Through Complex Scenes Using Dynamical Object Shape and Appearance Similarity
نویسندگان
چکیده
This paper addresses the issue of tracking a single visual object through crowded scenarios, where a target object may be intersected or partially occluded by other objects for a long duration, experience severe deformation and pose changes, and different motion speed in cluttered background. A robust visual object tracking scheme is proposed that exploits the dynamics of object shape and appearance similarity. The method uses a particle filter where a multi-mode anisotropic mean shift is embedded to improve the initial particles. Comparing with the conventional particle filter and mean shift-based tracking (Shan et al. 2004), our method offers the following novelties: We employ a fully tunable rectangular bounding box described by five parameters (2D central location, width, height, and orientation) and full functionaries in the joint tracking scheme; We derive the equations for the multi-mode version of the anisotropic mean shift where the rectangular bounding box is partitioned into concentric areas, allowing better tracking objects with multiple modes. The bounding box parameters are then computed by using eigen-decomposition of mean shift estimates and weighted averaging. This enables a more efficient redistributions of initial particles towards locations associated with large weights, hence an efficient particle filter tracking using a very small number of particles Z. H. Khan (B) · I. Y.-H. Gu · A. G. Backhouse Department of Signals and Systems, Chalmers University of Technology, Gothenburg, 41296, Sweden e-mail: [email protected] I. Y.-H. Gu e-mail: [email protected] A. G. Backhouse e-mail: [email protected] (N = 15 is used). Experiments have been conducted on video containing a range of complex scenarios, where tracking results are further evaluated by using two objective criteria and compared with two existing tracking methods. Our results have shown that the propose method is robust in terms of tracking drift, tightness and accuracy of tracked bounding boxes, especially in scenarios where the target object contains long-term partial occlusions, intersections, severe deformation, pose changes, or cluttered background with similar color distributions.
منابع مشابه
Online multiple people tracking-by-detection in crowded scenes
Multiple people detection and tracking is a challenging task in real-world crowded scenes. In this paper, we have presented an online multiple people tracking-by-detection approach with a single camera. We have detected objects with deformable part models and a visual background extractor. In the tracking phase we have used a combination of support vector machine (SVM) person-specific classifie...
متن کاملAn Efficient Target Tracking Algorithm Based on Particle Filter and Genetic Algorithm
In this paper, we propose an efficient hybrid Particle Filter (PF) algorithm for video tracking by employing a genetic algorithm to solve the sample impoverishment problem. In the presented method, the object to be tracked is selected by a rectangular window inside which a few numbers of particles are scattered. The particles’ weights are calculated based on the similarity between feature vecto...
متن کاملConvolutional Gating Network for Object Tracking
Object tracking through multiple cameras is a popular research topic in security and surveillance systems especially when human objects are the target. However, occlusion is one of the challenging problems for the tracking process. This paper proposes a multiple-camera-based cooperative tracking method to overcome the occlusion problem. The paper presents a new model for combining convolutiona...
متن کاملRobust Object Tracking under the Appearance Change Conditions
We propose a robust visual tracking framework based on particle filter to deal with the object appearance changes due to varying illumination, pose variantions and occlusions. We mainly improve the observation model and re-sampling process in a particle filter. We use on-line updating appearance model, affine transformation and M-estimation to construct an adaptive observation model. On-line up...
متن کاملRobust Object Tracking in Crowded Scenes Based on the Undecimated Wavelet Features and Particle Filter
A Scale Invariant Feature Transform (SIFT) based on particle filter algorithm is presented for object tracking. We propose a new algorithm for object tracking in crowded video scenes by exploiting the properties of Undecimated Wavelet Packet Transform (UWPT) and particle filter. SIFT features are used to correspond the region of interests across frames. Meanwhile, feature vectors generated via ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Signal Processing Systems
دوره 65 شماره
صفحات -
تاریخ انتشار 2011